We have shown you a regular water barrel as below. Without using any measuring device can you check if the barrel is more than half-filled or less than half-filled?
You walk into a room and see a bed. On the bed, there are two dogs, five cats, a giraffe, six cows, and a goose. There are also three doves flying above the bed. How many legs are on the floor?
15 caves are arranged in a circle at the temple of doom. One of these caves has the treasure of gems and wealth. Each day the treasure keepers can move the treasure to an adjacent cave or can keep it in the same cave. Every day two treasure seekers visit the place and have enough time to enter any two caves of their choice.
How do the treasure seekers ensure that they find the treasure in the minimum number of possible days?
A boy and his father are caught in a traffic accident, and the father dies. Immediately the boy is rushed to a hospital, suffering from injuries. But the attending surgeon at the hospital, upon seeing the boy, says 'I cannot operate. This boy is my son.' How is this situation explained?
There are two arch enemies Messi and Ronaldo who hate each other to an extreme. One day both were going together and a Jeanie appeared in front of them. Jeanie grants 3 wishes to Ronaldo and one to Messi.
Messi replied smartly 'Give me twice whatever Ronaldo demands'.
Ronaldo asked his 1st wish 'Give me 10000 billion dollars. Soon Messi gets 2000 billion dollars.
Ronaldo asked for his 2nd wish 'Give me one mansion in every country in the world. Soon Messi gets two mansions in every country of the world?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
A worker is to perform work for you for seven straight days. In return for his work, you will pay him 1/7th of a bar of gold per day. The worker requires a daily payment of 1/7th of the bar of gold. What and where are the fewest number of cuts to the bar of gold that will allow you to pay him 1/7th each day?
You have four chains. Each chain has three links in it. Although it is difficult to cut the links, you wish to make a single loop with all 12 links. What is the fewest number of cuts you must make to accomplish this task?
In 2007, a puzzle was released and $2 million prizes were offered for the first complete solution. The competition ended at noon on 31 December 2010, with no solution being found. Wiki