Imagine a box with two cogwheels, one big with 24 teeth and one small with 8 teeth. The big one is firmly attached to the center of the box which means it does not turn or move while the small one rotates around the big one.
How many times do you think that the smaller wheel will turn compared to the box when it turns once around the big one?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
The world's largest Thanksgiving turkey was on display at a fair. Everyone was admiring it when suddenly a woman ran up and shot the turkey and left. Everyone knew her yet nobody made any attempts to stop or report her. Why?