Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
A landlord calls both of his sons and tells them that their horses will now decide who will transfer the inheritance. He tells them to race along the land till the end and the one whose horse will be slower will win and be the heir to all the property.
Both of them keep wandering for days but to no result. Then they ask a wise man regarding it. The man advises them on the matter after which they jump on the horses and race as fast as they can till the end. Why did they do it?
A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
You walk into a room where there are three primates held in their respective cages:
1) A lion who is eating the flesh of a goat.
2) An orangutan who is playing with blocks.
3) A donkey who is sitting idle.
John and Jill are madly in love with each other. To remind Jill of his pure love, John wants to send her a ring by post but in their country where burglary is quite prominent, any package that is not locked comes under the risk of being stolen for the contents.
John and Jill possess many padlocks but neither one of them has the other key.
Can you find a way John can send the ring to Jill safely?