For an extra income, John decided to work at a Hotel for one hour daily. The manager offers him that they will pay him $11 after every 11 days.
However, John offered a different proposition to the manager. The offers stand as:
He will be paid just a penny on his first day.
Two pence will be paid on the second day,
Four pence will be paid on the third day.
And so on till the 11th day.
Two friends were betting. One said to the other, "The coin will be flipped twenty times and each time the coin lands on the head, I will give you $2 and each time it lands on the tale, you will give me $3." After flipping the coin twenty times not a single penny was exchanged among them.
You visit a home for specially-abled children on the occasion of Christmas where you meet with 50 children. You have a box of chocolates containing 50 chocolates exactly.
What if you were asked to one chocolate to each child in a manner that one chocolate still remains in the box? Is it possible?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.