A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
You stand in front of two doors. A guard stands next to each door. You know the following things: one path leads to paradise, the other leads to death. You cannot distinguish between the two doors. You also know that one of the two guards always tells the truth and the other always lies. You have permission to ask one guard one question to discover which door leads to paradise. What one question would you ask to guarantee you enter the door to paradise?
A woman is sitting in her hotel room and hears a knock at the door. She opens the door to see a man whom she’s never met before. He says, “I’m sorry, I have made a mistake, I thought this was my room.†He then goes down the corridor and into the elevator. The woman goes back into her room and calls security. What made the woman so suspicious of the man?
There are three boxes on a table. One of the box contains Gold and the other two are empty. A printed message contains in each box. One of the message is true and the other two are lies.
The first box says "The Gold is not here".
The Second box says "The Gold is not here".
The Third box says "The Gold is in the Second box".
13 decks of cards have been mixed. What is the minimum number of cards that must be taken out from the above-mixed cards to guarantee at least one 'four of a kind?
Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
You have four chains. Each chain has three links in it. Although it is difficult to cut the links, you wish to make a single loop with all 12 links. What is the fewest number of cuts you must make to accomplish this task?