John was writing his first book. After saving the document, he locked his laptop with a password and mentioned some phrases for the hint box.
A friend of his tried opening his laptop but found out that it was password protected. Following is the hint that appeared.
1 mobile 3 books 2 roars 1 night 4 balls 2 lighters 1 ghost 1 hat 3 watches.
Two friends were betting. One said to the other, "The coin will be flipped twenty times and each time the coin lands on the head, I will give you $2 and each time it lands on the tale, you will give me $3." After flipping the coin twenty times not a single penny was exchanged among them.
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
Alex is stranded on an island covered in forest.
One day, when the wind is blowing from the west, lightning strikes the west end of the island and sets fire to the forest. The fire is very violent, burning everything in its path, and without intervention the fire will burn the whole island, killing the man in the process.
There are cliffs around the island, so he cannot jump off.
How can the Alex survive the fire? (There are no buckets or any other means to put out the fire)
There are two dice with empty faces in front of you and a marker. You can mark any number on each of the faces of the two dice, but you have to display all 31 days of the month using the two of them.
Which numbers will you mark on which dice so that you can easily depict all the dates of the month?
13 decks of cards have been mixed. What is the minimum number of cards that must be taken out from the above-mixed cards to guarantee at least one 'four of a kind?