At a party, there are five people and a whole round cake lying at the centre of the table. Only four people will make a cut and take their piece and the last one will get the remaining piece on the table. How can they make sure that everyone gets a 1/5th of the piece?
On my way to St. Ives I saw a man with 7 wives. Each wife had 7 sacks. Each sack had 7 cats. Each cat had 7 kittens. Kittens, cats, sacks, wives. How many were going to St. Ives?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.