John and Jenni are a married couple. They have two kids, one of them is a girl. Assume safely that the probability of each gender is 1/2.
What is the probability that the other kid is also a girl?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Assume the given figure to be a delicious doughnut. Yes, now you can concentrate more on the puzzle. So you have this delicious doughnut in your refrigerator when your friends come knocking at the door. There are eight of them. Now you have to make three cuts in this doughnut so that each one of you nine people can enjoy a piece of it. Neither you nor your friends would mind the size of their piece as long as they are getting it. How will you do it?
There are hundred red gems and hundred blue gems. The blue gems are priceless while the red gems equal wastage. You have two sacks one labeled Heads and the other Tails. You have to distribute the gems as you want in the two sacks. Then a coin will be flipped and you will be asked to pick up a gem randomly from the corresponding sacks.
How will you distribute the gems between the sacks so that the odds of picking a Blue gem are maximum?