One absent-minded ancient philosopher forgot to wind up his only clock in the house. He had no radio, TV, telephone, internet, or any other means for telling time. So he travelled on foot to his friend's place a few miles down the straight desert road. He stayed at his friend's house for the night and when he came back home, he knew how to set his clock. How did he know?
You are given 16 witch hats. The hats are divided in four different colours – red, blue, green and yellow. Every colour has been assigned to four hats. Now each of the hat will be glued with a label of an arithmetic sign – ‘+’, ‘-‘, ‘x’ or ‘/’. But you can label one sign only once on one colour. In such an arrangement, the hats can be uniquely defined by its colour and symbol.
Can you arrange all the 16 hats in a 4x4 grid in a fashion that no two rows and columns have a repetition of colour or sign?
We have arranged four hats in the below picture to assist you.
A woman lives in a Tall building thirty-six floors high and served by several elevators which stop at each floor going up and down. Each morning she leaves her apartment and goes to one of the elevators. Whichever one she takes is three times more likely to be going up than down. Why?
You are playing a game with your friend Jack. There are digits from 1 to 9. You both will take turn erasing one digit and adding it to your score. The first one to score 15 points will win the game.
Here is what you have to do. You have to throw a ball as hard as you can but it must return back to you even if it does not bounce at anything. Also, you have nothing attached to the ball. There is no one on the other end to catch that ball and throw it back at you.