You are a cab driver who pools passengers. You pick 3 people from a destination and drop 1 after an hour. 2 people climb aboard at the same time and you drop 3 at the next destination. After some time, you pick 2 passengers only to drop 1 after a short distance where 3 more passengers climb up the cab. You leave the rest of the passengers one by one to their destination and then come back home.
You stand in front of two doors. A guard stands next to each door. You know the following things: one path leads to paradise, the other leads to death. You cannot distinguish between the two doors. You also know that one of the two guards always tells the truth and the other always lies. You have permission to ask one guard one question to discover which door leads to paradise. What one question would you ask to guarantee you enter the door to paradise?
You visit a home for specially-abled children on the occasion of Christmas where you meet with 50 children. You have a box of chocolates containing 50 chocolates exactly.
What if you were asked to one chocolate to each child in a manner that one chocolate still remains in the box? Is it possible?
John bought 150 chocolates but he misplaced some of them. His Father asked him how many chocolates were misplaced.
He gave the following answer to him:
If you count in pairs, one remains
If you count in threes, two remain
If you count in fours, three remain
If you count in fives, four remain
If you count in sixes, five remain
If you count in sevens, no chocolate remains.
Can you analyze the statements and tell us how many chocolates were lost?
In 2007, a puzzle was released and $2 million prizes were offered for the first complete solution. The competition ended at noon on 31 December 2010, with no solution being found. Wiki