You have two jars of chocolates labelled as P and Q. If you move one chocolate from P to Q, the number of chocolates on B will become twice the number of chocolates in A. If you move one chocolate from Q to P, the number of chocolates in both the jars will become equal.
Can you find out how many chocolates are there in P and Q respectively?
An infinite number of mathematicians are standing behind a bar. The first asks the barman for half a pint of beer, the second for a quarter pint, the third an eighth, and so on. How many pints of beer will the barman need to fulfill all mathematicians' wishes?
A King wants to send the diamond ring to his girlfriend securely. He got multiple locks and their corresponding keys. His girlfriend does not have any keys to these locks and if he sends the key without a lock, the key can be copied in the way. How can King send the ring to his girlfriend securely?
There are nine dots in the picture that has been attached with this question. Can you join all the dots by drawing four straight lines without picking up your pen?
You are an expert on paranormal activity and have been hired to locate a spirit haunting an old resort hotel. Strong signs indicate that the spirit lies behind one of four doors. The inscriptions on each door read as follows:
Door A: It's behind B or C
Door B: Its behind A or D
Door C: It's in here
Door D: It's not in here
Your psychic powers have told you three of the inscriptions are false, and one is true. Behind which door will you find the spirit?
Find out a multi-digit number that if multiplied by the number 9 or any of its multiplications products (i.e. 18, 27, 36, 45,..) will result in the multiplication factor repeated (n) number of times.
A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?