13 decks of cards have been mixed. What is the minimum number of cards that must be taken out from the above-mixed cards to guarantee at least one 'four of a kind?
In a kingdom, King George did not allow any citizen to visit the world outside. Also, only a person with proper paperwork was allowed to enter or he was sent back. A wooden bridge was what connected the kingdom to the world. The king had appointed a sharpshooter who would check the every five minutes on the bridge to check. After checking, he would go back to his hut and return exactly after five minutes again. The bridge took 9 minutes to cross.
A merchant was able to escape the kingdom without harming the shooter. How?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
John is pretty weird. He likes toffees but hates chocolates. He loves books but never reads. He likes to build his troops in an online game but does not proceed with the war. He likes to go swimming but is afraid of water.
Seeking this behaviour, can you tell whether he likes balloons and parties?
John is on an island and there are three crates of fruit that have washed up in front of him. One crate contains only apples. One crate contains only oranges. The other crate contains both apples and oranges.
Each crate is labelled. One reads 'apples', one reads 'oranges', and one reads 'apples and oranges'. He know that NONE of the crates have been labeled correctly - they are all wrong.
If he can only take out and look at just one of the pieces of fruit from just one of the crates, how can he label all of the crates correctly?