One day, I thought of ways that can be used for creating a palindrome. So I decided that I will turn into a larger number by adding the reversed digits to the original number and keep doing it till I finally obtained a palindrome.
I am not sure if this process will always result in a palindrome eventually but I was able to produce a four-digit palindrome. Can you guess my starting number?
Only one colour, but not one size,
Stuck at the bottom, yet easily flies.
Present in sun, but not in rain,
Doing no harm, and feeling no pain.
What is it?
You have two strings whose only known property is that when you light one end of either string it takes exactly one hour to burn. The rate at which the strings will burn is completely random and each string is different.
I have thought of a number that is made up by using all the ten digits just once. Here are a few clues for you to guess my number:
First digits is divisible by 1.
First two digits are divisible by 2.
First three digits are divisible by 3.
First four digits are divisible by 4.
First five digits are divisible by 5.
First six digits are divisible by 6.
First seven digits are divisible by 7.
First eight digits are divisible by 8.
First nine digits are divisible by 9.
The number is divisible by 10.
A hen, a dog, and a cat are stolen. Three suspects are arrested named Robin, Steve, and Tim. The police are sure that all of them stole one of the animals but they don't know who stole which animal.
Sherlock Holmes is appointed to identify and is provided with the following statements from the investigation.
Robin - Tim stole the hen
Steve - Tim stole the dog
Tim - Both Robin and Steve are lying. I neither stole a hen nor a dog.
Sherlock is somehow able to deduce that the man who stole the cat is telling a lie and the man who stole the hen is telling truth.
There are 20 people in an empty, square room. Each person has full sight of the entire room and everyone in it without turning his head or body, or moving in any way (other than the eyes). Where can you place an apple so that all but one person can see it?
There is a square piece of paper with a hole that is denoted by the circle on the top right side in the given picture. You have to cut the paper in a manner that it forms two and only two separate pieces of paper and then rearrange the pieces in a manner that the holes come in the centre of the paper.