A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
Four children having five rocks each were playing a game in which they had to throw the rock at a particular solid area in the water. Child 1- Succeeded in throwing three rocks at a solid area but one of the rocks sunk. Child 3 - His aim was so bad that all rocks got sunk. Child 4- He was awesome and none of the rocks got sunk. Child 2 - Was the winner but was struck by a rock in the head and died. Who killed Child 2?
Thirty friends were on a hiking trip when they decided to enjoy the bonfire. They assembled for it and agreed to play a game. For that, they divided themselves into five teams with seven members each, forming five rows.
While sitting in the Car, John suddenly finds that one of the wheels was missing. John noticed that a killer is approaching towards him. John cannot get out of the car.
You are a cab driver who pools passengers. You pick 3 people from a destination and drop 1 after an hour. 2 people climb aboard at the same time and you drop 3 at the next destination. After some time, you pick 2 passengers only to drop 1 after a short distance where 3 more passengers climb up the cab. You leave the rest of the passengers one by one to their destination and then come back home.
In a box, there is a jumble of 7 red balls, 6 blue balls, 5 green balls, and 4 yellow balls. What is the minimum number of balls, will you have to pick up so that you have at least 4 balls of the same colour?
A solo dice game is played. In this game, upon each turn, a normal pair of dice is rolled and the score is calculated not by adding the numbers but multiplying them.
In a particular game, the score for the second roll is five more than what was achieved in the first roll. The score for the third roll is six less than what was completed in the second roll. The score for the fourth roll is eleven more than what was achieved in the third. The score for the fifth roll is eight less than what was completed in the fourth.
Can you calculate the score for each of the five throws?