On rolling two dices (six-sided normal dice) together, what is the probability that the first one comes up with a 2 and the second one comes up with a 5?
Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?
15 caves are arranged in a circle at the temple of doom. One of these caves has the treasure of gems and wealth. Each day the treasure keepers can move the treasure to an adjacent cave or can keep it in the same cave. Every day two treasure seekers visit the place and have enough time to enter any two caves of their choice.
How do the treasure seekers ensure that they find the treasure in the minimum number of possible days?