A Detective reviewed the information they had on the case so far.
A lady named 'Caterina' was found shot and they already had a list of suspects - Ankit, Tarun, Harish, Manoj and Manish.
The killer is a fan of challenges him by leaving notes ad various places.
* The first was found in a toilet room.
* The second was found in an art room.
* The third was in a restroom.
* the fourth in an underwater room.
* The fifth at the no-smoking room.
All of the notes read the same thing, 'The clues are where you find the notes.' Yet, nothing was found at any place the notes were.
Detective the genius, immediately solved the case.
Who was the killer?
A mules travels the same distance daily.
I noticed that two of his legs travels 10km and the remaining two travels 12km.
Obviously two mules legs cannot be a 2km ahead of the other 2.
The mules is perfectly normal. So how come this be true ?
A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
A famous swimmer can swim downstream in a lake in exactly 40 minutes with the lake current.
He can swim upstream in that lake in exactly 60 minutes against the lake current.
The length of the lake is 2 km.
How long he can cover the distance of one side at a still lake with no current?
100 prisoners are stuck in the prison in solitary cells. The warden of the prison got bored one day and offered them a challenge. He will put one prisoner per day, selected at random (a prisoner can be selected more than once), into a special room with a light bulb and a switch which controls the bulb. No other prisoners can see or control the light bulb. The prisoner in the special room can either turn on the bulb, turn off the bulb or do nothing. On any day, the prisoners can stop this process and say "Every prisoner has been in the special room at least once". If that happens to be true, all the prisoners will be set free. If it is false, then all the prisoners will be executed. The prisoners are given some time to discuss and figure out a solution. How do they ensure they all go free?