John is on an island and there are three crates of fruit that have washed up in front of him. One crate contains only apples. One crate contains only oranges. The other crate contains both apples and oranges.
Each crate is labelled. One reads 'apples', one reads 'oranges', and one reads 'apples and oranges'. He know that NONE of the crates have been labeled correctly - they are all wrong.
If he can only take out and look at just one of the pieces of fruit from just one of the crates, how can he label all of the crates correctly?
You find yourself in a strange place guarded by two guards.One of the guard always say truth while other always lies.You don't know the identity of the two.You can ask only one question to go out from there. What should you ask?
our enemy challenges you to play Russian Roulette with a 6-cylinder pistol (meaning it has room for 6 bullets). He puts 2 bullets into the gun in consecutive slots, and leaves the next four slots blank. He spins the barrel and hands you the gun. You point the gun at yourself and pull the trigger. It doesn't go off. Your enemy tells you that you need to pull the trigger one more time, and that you can choose to either spin the barrel at random, or not, before pulling the trigger again. Spinning the barrel will position the barrel in a random position.
Assuming you'd like to live, should you spin the barrel or not before pulling the trigger again?
Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?
Using the clues below, what four numbers am I thinking of?
The sum of all the numbers is 31.
One number is odd.
The highest number minus the lowest number is 7.
If you subtract the middle two numbers, it equals two.
There are no duplicate numbers.
Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
In an Art Gallary, When the clock hit 11 am, Artist hung the painting number 30. When it struck 4 pm, he hung painting number 240 and when it struck 7:30 pm, he hung painting number 315.
Can you determine, which painting number will he hang when the time is 9:20 pm?