A time long back, there lived a king who ruled the great kingdom of Trojan House. As a part of the renovation of the kingdom to meet future security needs, he asked his chief architect to lay down a new play in a manner that all of his 10 castles are connected through five straight walls and each wall must connect four castles together. He also asked the architect that at least one of his castles should be protected with walls. The architect could not come up with any solution that served all of King's choices, but he suggested the best plan that you can see in the picture below. Can you find a better solution to serve the king's demand?
Three fair coins are tossed in the air and they land with heads up. Can you calculate the chances that when they are tossed again, two coins will again land with heads up?
A man fell off a smuggling boat into deep water. He could not swim and he was not wearing anything to keep him afloat. It took 30 minutes for the people on the boat to realize someone was missing. The missing man was rescued two hours later on the return trip. Why didn't he drown? Note:- He didn't know swimming, the sea was deep, and He wasn't holding anything
Two boys wish to cross a river. The only way to get to the other side is by boat, but that boat can only take one boy at a time. The boat cannot return on its own, there are no ropes or similar tricks, yet both boys manage to cross using the boat.
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
There is an ancient kingdom where every married woman keeps information regarding the fidelity of other men. However, what they don't know is the fidelity of their own husbands. Also, there is an ancient belief that they don't tell each other about the fidelity of their husbands.
On a certain day, the queen of the kingdom declares that she has identified at least one unfaithful man in the kingdom. She allows the wives to identify and gives them authority to kill their husbands if they are unfaithful at midnight.
In a box, there is a jumble of 7 red balls, 6 blue balls, 5 green balls, and 4 yellow balls. What is the minimum number of balls, will you have to pick up so that you have at least 4 balls of the same colour?
In front of you, there are 9 coins. They all look absolutely identical, but one of the coins is fake. However, you know that the fake coin is lighter than the rest, and in front of you is a balance scale. What is the least number of weightings you can use to find the counterfeit coin?