An equation has been laid down using a few matchsticks. However, as you can see, the equation is not correct. Can you correct the equation if you are allowed to add or remove 5 matchsticks?
After teaching his class all about Roman numerals (X = 10, IX=9 and so on) the teacher asked his class to draw a single continuous line and turn IX into 6. The teacher's only stipulation was that the pen could not be lifted from the paper until the line was complete.
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.