A man has eighty-one cows ( numbered 1,2,3...81 as such). The beauty is that cow no. 1 gives 1ltr of milk, cow no. 2 gives 2ltrs of milk and so on. The man wants to equally distribute the cows among his nine sons so that each one of them gets the same quantity of milk.
John and Jenni are a married couple. They have two kids, one of them is a girl. Assume safely that the probability of each gender is 1/2.
What is the probability that the other kid is also a girl?
How many people must be gathered together in a room, before you can be certain that there is a greater than 50/50 chance that at least two of them have the same birthday?