A rubber ball keeps on bouncing back to 2/3 of the height from which it is dropped. Can you calculate the fraction of its original height that the ball will bounce after it is dropped and it has bounced four times without any hindrance ?
By using all numbers, i.e. 123456789 and subtraction/addition, operators number 100 can be formed in many ways.
Example: 98 + 7 + 6 - 5 - 4 - 3 + 2 - 1 = 100
But if we add a condition use of the number 32 is a must. Then there are limited solutions.
One of such solution is: 9 - 8 + 76 + 54 - 32 + 1 = 100
A man is walking down a road with a basket of eggs. As he
is walking he meets someone who buys one-half of his eggs
plus one-half of an egg.
He walks a little further and meets another person who buys
one-half of his eggs plus one-half of an egg.
After proceeding further he meets another person who buys
one-half of his eggs plus one half an egg. At this point, he
has sold all of his eggs, and he never broke an egg.
How many eggs did the man have to start with?
The sum of a mother, her baby and her dog's weight is 170 Kg. How much does the baby weigh if the mother weighs 100 kg more than the combined weight of the baby and the dog, and the dog weighs 60 per cent less than the baby?