Only one color, but not one size,
Stuck at the bottom, yet easily flies.
Present in sun, but not in rain,
Doing no harm, and feeling no pain.
What is it?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.
A mules travels the same distance daily.
I noticed that two of his legs travels 10km and the remaining two travels 12km.
Obviously two mules legs cannot be a 2km ahead of the other 2.
The mules is perfectly normal. So how come this be true ?