Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
John, Jack and Jill are in a desert. John doesn't like Jill and hence decides to murder him. He poisons the water supply of Jill. Since it is a desert area, Jill must drink or he will die of thirst.
Jack does not know of the actions of John and also decides to murder Jill. To succeed in his ill motives, he removes the water supply of Jill so he dies of thirst.
Its something that each of us devours,
Not just us but birds, beats, trees, and flowers,
Frets iron and nibbles steel,
Toil hard stones to meal,
Exterminates king, collapse town,
And blows the mountains down.
There are three Athletes (John, Tarun and Harish) and their individual Coaches (Jacob, Meenaxi and Priyanka) standing on the shore.
No Coach trusts their Athlete to be near any other Coach unless they are also with them.
There is a boat that can hold a maximum of two persons.
How can the six people get across the river?
John is on an island and there are three crates of fruit that have washed up in front of him. One crate contains only apples. One crate contains only oranges. The other crate contains both apples and oranges.
Each crate is labelled. One reads 'apples', one reads 'oranges', and one reads 'apples and oranges'. He know that NONE of the crates have been labeled correctly - they are all wrong.
If he can only take out and look at just one of the pieces of fruit from just one of the crates, how can he label all of the crates correctly?
After teaching his class all about Roman numerals (X = 10, IX=9 and so on) the teacher asked his class to draw a single continuous line and turn IX into 6. The teacher's only stipulation was that the pen could not be lifted from the paper until the line was complete.
In 2007, a puzzle was released and $2 million prizes were offered for the first complete solution. The competition ended at noon on 31 December 2010, with no solution being found. Wiki