Two fathers and two sons decided to go to a shop and buy some sweets upon reaching. Each of them bought 1 kg of sweet. All of them returned home after some time and found out that they had 3kg of sweets with them.
They did not eat the sweets in the way, nor threw or lose anything. Then, how can this be possible?
There are three Athletes (John, Tarun and Harish) and their individual Coaches (Jacob, Meenaxi and Priyanka) standing on the shore.
No Coach trusts their Athlete to be near any other Coach unless they are also with them.
There is a boat that can hold a maximum of two persons.
How can the six people get across the river?
You along with your friend are standing in front of two houses. Each of those houses inhabits a family with two children.
Your friend tells you the below two facts:
1) On your left is a family that has a boy who likes accounts but the other child loves science.
2) On the right is a family with a seven-year-old boy and a newborn baby.
You ask him, "Does either of the family have a girl?"
To this, he replies, "I am not quite sure. But can you guess that? If you are right, I will give you $500."
Which family do you think is likely to have a girl?
James Bond is caught up in a mysterious scenario where the evil villain has him blindfolded. He somehow breaks through the handcuffs but is unable to get the blindfold off. Upon searching, he comes across a bow and 3 arrows. He can hear the villain speak, and thus tries to take a shot at him. He launches the first arrow, it misses the villain. He then launches the second arrow and it misses by a greater margin.
What is the probability that this third shot our James bond takes will be worse than the second shot?
A pregnant woman is preparing to name her seventh child. Her children's names so far are Dominique, Regis, Michelle, Fawn, Sophie, and Lara. What will she name her next child -- Jessica, Katie, Abby or Tilly?
You visit a home for specially-abled children on the occasion of Christmas where you meet with 50 children. You have a box of chocolates containing 50 chocolates exactly.
What if you were asked to one chocolate to each child in a manner that one chocolate still remains in the box? Is it possible?