Two fathers and two sons decided to go to a shop and buy some sweets upon reaching. Each of them bought 1 kg of sweet. All of them returned home after some time and found out that they had 3kg of sweets with them.
They did not eat the sweets in the way, nor threw or lose anything. Then, how can this be possible?
I went to the bookshop and spent one-half of the money that was in my purse.
When I came out, I found that I had as many cents as I had dollars and half as many dollars as I had cents when I went in. Find the money in my purse when I entered the store.
You have four chains. Each chain has three links in it. Although it is difficult to cut the links, you wish to make a single loop with all 12 links. What is the fewest number of cuts you must make to accomplish this task?
A research team went to a village somewhere between the jungles of Africa. Luckily for them, they reached the day when quite an interesting custom was to be performed. The custom was performed once a year as they confirmed and was performed in order to collect the taxes from every male of the region.
The taxes were to be paid in the form of grains. Everyone must pay pounds of grain equaling his respective age. This means a 20-year-old will have to pay 20 pounds of grain and a 30-year-old will pay 30 pounds of grain and so on.
The chief who collects the tax has 7 weights and a large 2-pan scale to weigh. But there is another custom that the chief can weigh only three of the seven weights.
Can you find out the weights of the seven weights? Also, what is the maximum age of the man that can be weighed for the payment of taxes?
John went to a parrot shop in Mexico, and the parrot owner told him that his parrot is so unique that he repeats everything he hears. John got excited and immediately bought the parrot. John went home and spoke many words, but the parrot does not repeat anything.
He went again to the parrot shop and complaint to the shopkeeper, but the shopkeeper never lied. Explain?
A game is being played where eight players can last for thirty-five minutes. Six substitutes alternate with each player in this game. Thus, all players are on the pitch for the same amount of time including the substitutes.
A worker is to perform work for you for seven straight days. In return for his work, you will pay him 1/7th of a bar of gold per day. The worker requires a daily payment of 1/7th of the bar of gold. What and where are the fewest number of cuts to the bar of gold that will allow you to pay him 1/7th each day?