In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?
Seven Robbers robbed a bank and hide the coins in a lonely place.
They decide to divide the money equally the next morning. Two greedy robbers decided to cheat the others and reach the place at night. They equally divided the coins between them, one coin left. So they called another robber and then they decided to divide equally among the three. Sadly again one coin left. The same thing happened to the 4th 5th and the 6th robber.
However, when the 7th robber reached in the morning, they can divide the coins equally.
A rain drop fell from one leaf to another leaf and lost 1/4th of its volume. It then fell to another leaf and lost 1/5th of the volume. It again fell on another leaf and lost 1/5th of the volume.
This process kept repeating till it fell on the last leaf losing 1/75th of its volume.
Can you calculate the total percentage of loss from the initial volume when the drop has fallen to the last leaf accurate up to two decimal places?