You are presented with three boxes. One of them has a red ball inside and the other two have a black ball inside each of them. You are asked to pick up the one with red ball and you pick one. Now, one of the other boxes is opened and it is found to have a black ball.
You are presented with a chance to change your box with the one that is left closed. Will you change your box? Why or why not?
In the Mexico City area, there are two Houses H1 and H2. Both H1 and H2 have two children each.
In House H1, The boy plays for Mexico Youth academy and the other child plays baseball.
In House H2, The boy Plays soccer for his school in Mexico and they recently have a newborn.
Can you prove that the probability of House-H1 having a girl child is more than that of House-H2?
How many points are there on the globe where, by walking one mile south, then one mile east and then one mile north, you would reach the place where you started?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
In 2007, a puzzle was released and $2 million prizes were offered for the first complete solution. The competition ended at noon on 31 December 2010, with no solution being found. Wiki