A time long back, there lived a king who ruled the great kingdom of Trojan House. As a part of the renovation of the kingdom to meet future security needs, he asked his chief architect to lay down a new play in a manner that all of his 10 castles are connected through five straight walls and each wall must connect four castles together. He also asked the architect that at least one of his castles should be protected with walls. The architect could not come up with any solution that served all of King's choices, but he suggested the best plan that you can see in the picture below. Can you find a better solution to serve the king's demand?
A crime was committed at baker street. Ibrahim Dakota who was shot in the stomach was the main suspect. Sherlock questioned the suspect. The conversation started as:
Sherlock: What's your story, Ibrahim?
Ibrahim: I was walking around baker street and suddenly a man from the back shot me. I ran as fast as I could to save my life".
Sherlock: That is enough (and ask the police to arrest him).
If you paint a brown house white it will become a white house. If the stoplight changes from red to green, then the light is green. So, if you throw a white shirt into the Red Sea, what will it become?
A man had five children. He had $100 with him to give to his children. He decided to start with the youngest child and then give $2 more than each younger child to his next elder child.
For example, if he gives $x to the youngest child, he will give $(x+2) to the next one, $[(x+2) + 2] to the next one and so on.
Can you find out how much did the youngest one receive?
Three cars are driving on a track that forms a perfect circle and is wide enough that multiple cars can pass anytime. The car that is leading in the race right now is driving at 55 MPH and the car that is trailing at the last is going at 45 MPH. The car that is in the middle is somewhere between these two speeds.
Right now, you can assume that there is a distance of x miles between the leading car and the middle car and x miles between the middle car and the last car and also, x is not equal to 0 or 1.
The cars maintain their speed till the leading car catches up with the last car and then every car stops. In this scenario, do you think of any point when the distance between any two pairs will again be x miles i.e. the pairs will be x distance apart at the same time ?