There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.
A man hijacks an aeroplane transporting both passengers(8 of them) and valuable cargo. After taking the cargo, the man demands nine parachutes, puts one of them on, and jumps, leaving the other eight behind. Why did he want eight?
You walk into a room and see a bed. On the bed, there are two dogs, five cats, a giraffe, six cows, and a goose. There are also three doves flying above the bed. How many legs are on the floor?
There are two beautiful yet remote islands in the South Pacific. The Islanders born on one island always tell the truth, and the Islanders from the other island always lie.
You are on one of the islands and meet three Islanders. You ask the first which island they are from in the most appropriate Polynesian tongue, and he indicates that the other two Islanders are from the same island. You ask the second Islander the same question, and he also indicates that the other two Islanders are from the same island.
Can you guess what the third Islander will answer to the same question?
A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
You visit a home for specially-abled children on the occasion of Christmas where you meet with 50 children. You have a box of chocolates containing 50 chocolates exactly.
What if you were asked to one chocolate to each child in a manner that one chocolate still remains in the box? Is it possible?