Three people are in a room. Ronni looks at the Nile. The Nile looks at Senthil. Ronni is married but Senthil is not married. At any point, is a married person looking at an unmarried person? Yes, No or Cannot be determined.
Sally lives in a place where six months of the year is mild summer and the temperature drops significantly the other six months. She owns a lake where there is a small island. She wants to build a house on the island and needs to get materials there. She doesn’t have a boat, plane, or anything to transport them to the island. How does Sally solve this problem?
John and his team plan to rob a safe. They got just one chance to break the code else the local police will be informed. Below are clues:
A) Exactly one number is perfectly placed: 9 8 1
B) Everything is incorrect: 9 2 4
C) Two numbers are part of the code of the safe but are wrongly placed: 0 9 3
D) One number is part of the code of the safe but is wrongly placed: 1 4 7
E) One number is part of the code of the safe but is wrongly placed: 7 8 3
A time long back, there lived a king who ruled the great kingdom of Trojan House. As a part of the renovation of the kingdom to meet future security needs, he asked his chief architect to lay down a new play in a manner that all of his 10 castles are connected through five straight walls and each wall must connect four castles together. He also asked the architect that at least one of his castles should be protected with walls. The architect could not come up with any solution that served all of King's choices, but he suggested the best plan that you can see in the picture below. Can you find a better solution to serve the king's demand?
John, Jack and Jill are in a desert. John doesn't like Jill and hence decides to murder him. He poisons the water supply of Jill. Since it is a desert area, Jill must drink or he will die of thirst.
Jack does not know of the actions of John and also decides to murder Jill. To succeed in his ill motives, he removes the water supply of Jill so he dies of thirst.
100 prisoners are stuck in the prison in solitary cells. The warden of the prison got bored one day and offered them a challenge. He will put one prisoner per day, selected at random (a prisoner can be selected more than once), into a special room with a light bulb and a switch which controls the bulb. No other prisoners can see or control the light bulb. The prisoner in the special room can either turn on the bulb, turn off the bulb or do nothing. On any day, the prisoners can stop this process and say "Every prisoner has been in the special room at least once". If that happens to be true, all the prisoners will be set free. If it is false, then all the prisoners will be executed. The prisoners are given some time to discuss and figure out a solution. How do they ensure they all go free?