In the Thar desert, 3 men found a big 24L Jar is full of water. Since there is a shortage of water so they decided to distribute the water among themselves such that they all have equal amounts of it. But they only have a 13L, a 5L and an 11-litre Jar.
In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?
Three cars are driving on a track that forms a perfect circle and is wide enough that multiple cars can pass anytime. The car that is leading in the race right now is driving at 55 MPH and the car that is trailing at the last is going at 45 MPH. The car that is in the middle is somewhere between these two speeds.
Right now, you can assume that there is a distance of x miles between the leading car and the middle car and x miles between the middle car and the last car and also, x is not equal to 0 or 1.
The cars maintain their speed till the leading car catches up with the last car and then every car stops. In this scenario, do you think of any point when the distance between any two pairs will again be x miles i.e. the pairs will be x distance apart at the same time ?