If two fifty-foot ropes are suspended from a forty-foot ceiling that is twenty feet apart, how much rope will you be able to steal if you have a knife?
A King wants to send the diamond ring to his girlfriend securely. He got multiple locks and their corresponding keys. His girlfriend does not have any keys to these locks and if he sends the key without a lock, the key can be copied in the way. How can King send the ring to his girlfriend securely?
Two fathers and two sons decided to go to a shop and buy some sweets upon reaching. Each of them bought 1 kg of sweet. All of them returned home after some time and found out that they had 3kg of sweets with them.
They did not eat the sweets in the way, nor threw or lose anything. Then, how can this be possible?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
* When we multiply three numbers, we will get the prime numbers.
* The difference between the second and the first number is equal to the third and second.
There are two dice with empty faces in front of you and a marker. You can mark any number on each of the faces of the two dice, but you have to display all 31 days of the month using the two of them.
Which numbers will you mark on which dice so that you can easily depict all the dates of the month?