You have a thousand Re. 1 coins with you. You have ten bags with you and you can put any number of coins in each of the bags. The condition is that if someone asks you for any amount between 1 and 1000, you must be able to give that amount by just giving the bag (you are not allowed to open the bag and give coins).
A time long back, there lived a king who ruled the great kingdom of Trojan House. As a part of the renovation of the kingdom to meet future security needs, he asked his chief architect to lay down a new play in a manner that all of his 10 castles are connected through five straight walls and each wall must connect four castles together. He also asked the architect that at least one of his castles should be protected with walls. The architect could not come up with any solution that served all of King's choices, but he suggested the best plan that you can see in the picture below. Can you find a better solution to serve the king's demand?
10 people came into a hotel with 9 rooms and each guest wanted his own room. The bellboy solved this problem.
He asked the tenth guest to wait for a little with the first guest in room number 1. So in the first room, there were two people. The bellboy took the third guest to room number 2, the fourth to number 3, ..., and the ninth guest to room number 8. Then he returned to room number 1 and took the tenth guest to room number 9, still vacant.
How can everybody have his own room?
A girl was sitting in her hotel room when she heard a knock on the door. She opened the door and found that a man was standing outside.
The man said, "Oh! I am really sorry, I thought this was my room."
He then walked through the corridor to the elevator. The girl did not know the man. She closed her door and called security asking them to apprehend the man.
What made her suspicious of that man? He might have been genuinely mistaken.
The captain of a ship was telling this interesting story: "We travelled the sea far and wide. At one time, two of my sailors were standing on opposite sides of the ship. One was looking west and the other one east. And at the same time, they could see each other clearly." How can that be possible?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.