In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?
On my way to St. Ives I saw a man with 7 wives. Each wife had 7 sacks. Each sack had 7 cats. Each cat had 7 kittens. Kittens, cats, sacks, wives. How many were going to St. Ives?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
A man is lying dead in a field where no one is around. His head is split open and his legs are disfigured. Near to him, there is an unopened package. No living organism can be found anywhere at the crime scene.